Gas transport properties of polysulphones: 3. Comparison of tetramethyl-substituted bisphenols

J. S. McHattie, W. J. Koros and D. R. Paul*

Department of Chemical Engineering, and Center for Polymer Research, The University of Texas at Austin, Austin, Texas 78712, USA (Received 5 October 1990; revised 28 November 1990; accepted 7 December 1990)

The gas sorption and transport properties of a series of polysulphones with tetramethyl ring substitution are reported. The results for tetramethylhexafluorobisphenol A polysulphone (TMHFPSF) and tetramethylbisphenol F polysulphone (TMPSF-F) are compared to tetramethylbisphenol A polysulphone (TMPSF) and bisphenol A polysulphone (PSF). The effect of the substituents on chain mobility and chain packing has been related to the gas transport properties. Dynamic mechanical thermal analysis and differential scanning calorimetry were used to judge chain mobility, while X-ray diffraction and free-volume calculations give information about chain packing. Permeability measurements were made for He, H_2 , O_2 , N_2 , CH₄ and CO₂ at 35°C over a range of pressures up to 20 atm. Sorption experiments were also done for N_2 , CH₄ and CO_2 under the same conditions. The permeability coefficients of the methyl-substituted polymers rank in the order TMHFPSF \gg TMPSF $>$ TMPSF-F for all of the gases. This is the same order as the unsubstituted materials, hexafluorobisphenol A polysulphone (HFPSF), PSF and bisphenol F polysulphone (PSF-F), which suggests that the effects of tetramethyl substitution are somewhat additive with other structural modifications. Relative gas permeability values are in agreement with relative fractional free-volume values as well as with γ transition temperatures.

(Keywords: polysulphones; permeation; sorption; diffusion; membranes)

INTRODUCTION

An inherent limit to the performance of gas separation membranes is the trade-off between permeability and permselectivity exhibited by most materials that might be used as membranes. A successful strategy for overcoming this limit involves systematically varying polymer structure to restrict intrasegmental mobility and chain packing efficiency¹⁻⁶. Successful examples of this approach are tetramethylbisphenol A polycarbonate (TMPC)^{5,6}, tetramethylbisphenol A polysulphone (TMPSF) 7's and tetramethylhexafluorobisphenol A polycarbonate (TMHFPC)⁶. The tetramethyl substitution simultaneously increases free volume and chain stiffness. When compared to their unsubstituted counterparts, these methyl-substituted polymers are several times more permeable, with no significant loss in selectivity $5-8$

Pilato *et al.*⁷ reported exceptionally high separation factors for TMPSF. More recently, Moe *et al. s* obtained more conservative values for the selectivity of this polymer. The results from the present study agree with those of Moe and coworkers. Much care was taken to obtain these results with special regard to such issues as film preparation, thermal history and removal of residual solvents. Therefore, it is believed that the results of Pilato *et al.* are in error.

The present work involves the study of a series of tetramethyl-substituted polysulphones in which the isopropylidene unit of TMPSF has been replaced with another molecular group. The effect of these substitutions on gas transport properties is related to segmental mobility using thermal techniques and to chain packing by free-volume analysis. Tetramethylhexafluorobisphenol A polysulphone (TMHFPSF) and tetramethylbisphenol F polysulphone (TMPSF-F) are compared to TMPSF. Bisphenol A polysulphone (PSF), which has been commercially used in gas separation membranes^{9,10}, is also included as the baseline unsubstituted material. Chemical structures and other monomer and synthesis information are presented in *Table 1.*

This paper parallels a similar study of polysulphones without the tetramethyl ring substitution 11 . Included in that group are hexafluorobisphenol A polysulphone (HFPSF) and bisphenol F polysulphone (PSF-F), which provide a base for comparison with TMHFPSF and TMPSF-F. Another paper deals with the differences between symmetric and asymmetric methyl substitution of polysulphones¹².

MATERIALS

High-molecular-weight polysulphones were synthesized by the condensation of the appropriate bisphenol and a dihalogenated diphenylsulphone in the presence of a base. One of two procedures, described by Johnson *et al. 13* and by Mohanty *et al. 14-16,* was used with only slight modification¹². Special care was taken to remove residual solvents, especially 1-methyl-2-pyrrolidinone

^{*}To whom correspondence should be addressed

Table 2 Characterization of molecular packing for polysulphones

^aX-ray diffraction, $\lambda = 1.54$ Å

(NMP), during polymer recovery. This was especially problematic when dealing with these high- $T_{\rm g}$ polymers, as prolonged exposure to temperatures above $T_{\rm g}$ resulted in polymer crosslinking and degradation. NMP was removed successfully by Soxhlet extraction¹⁷ for several days each with water and ethanol. *Table I* lists monomer sources and purification techniques as well as the details of the polymerization reactions. Amorphous films of each of the polymers were prepared by casting from methylene chloride on a clean glass plate. The films were then dried thoroughly at 60°C for 1 week in a vacuum oven before characterization. As a measure of molecular weight, the intrinsic viscosity for each polymer was obtained in chloroform at 25°C using a size 25 Cannon-Fenske viscometer.

FREE-VOLUME ANALYSIS

The free volume of each of the polymers was obtained by subtracting a calculated occupied volume, V_0 , from the measured specific volume, V . The specific volume was measured by flotation of small samples of film in a density gradient column maintained at 30°C. The specific free volume *(SFV)* and fractional free volume *(FFV)* are given by :

$$
SFV = V - V_0 \qquad FFV = (V - V_0)/V \tag{1}
$$

The group contribution methods of Bondi^{18,19} and of Sugden²⁰ can be used to calculate V_0 . As a complement to the free-volume analysis, wide-angle X-ray diffraction measurements were performed on a Phillips X-ray

diffractometer with Cu K_{σ} radiation having a wavelength of 1.54 Å. The *d*-spacing, a measure of the most probable intersegmental spacing²¹, was calculated from the Bragg equation²², $n\lambda = 2d \sin \theta$, at the angle of maximum reflective intensity.

The calculated free-volume values and the X-ray diffraction d-spacing for each polymer are given in *Table* 2. The d-spacing and fractional free volume are larger for the substituted polymers than for PSF. In agreement with the previous study¹², symmetric methyl substitution results in greater interchain distance and more free volume than the unsubstituted polymer. Among the methyl-substituted polymers, the d-spacing is not entirely consistent with the *FFV,* but the X-ray diffraction patterns are quite broad, making the d-spacing only an approximate measure of molecular packing. The *FFV* is likely to be a more reliable measure of packing efficiency. As observed in other polycarbonates²³ and polysulphones^{11,12}, *FFV* based on the Bondi method correlates well with gas permeability. The correlation between the gas permeability and diffusion coefficients and the *FFV* for the entire family of polysulphones is given in the Appendix.

THERMAL ANALYSIS

The glass transition temperature of each polymer was determined by differential scanning calorimetry with a Perkin–Elmer DSC-7 at a scanning rate of 20° C min⁻¹. The midpoint of the heat capacity shift on the second scan was taken as the $T_{\rm g}$. Low-temperature transitions

Polymer	D.s.c. ^a	D.m.t.a. / 110 Hz					
	T_{\bullet} (°C)	T_{α} (°C)		T_{β} (°C) T_{γ_1} (°C)	T_{ν} (°C)		
PSF	186	193	85		-80		
TMPSF	242	$\overline{}$		-10	-92		
TMPSF-F	232	\mathbf{a}		$25, -50$	-85		
TMHFPSF	248	\overline{b}		$5, -45$	-100		

Table 3 Thermal transitions **for polysulphones**

 a 20 $^{\circ}$ C min⁻¹

 b Out of range ($>$ 200 $^{\circ}$ C)

were examined by dynamic mechanical thermal analysis (d.m.t.a.) using the Imass Autovibron Dynamic Mechanical Viscoelastometer operated in the tensile mode at 110 Hz and at a heating rate of 1° C min⁻¹. These d.s.c, and d.m.t.a, results are summarized in *Table 3.*

Polysulphones and related poly(arylene ether)s exhibit several transition regions in the glassy state, which can be associated with specific molecular phenomena. The transitions are generally labelled with the symbols α, β, γ , etc., in order from high to low temperature, where the α transition corresponds to the glass-to-rubber transition. The glass transition temperature has often been used as the sole measure of polymer chain rigidity, but the secondary transitions may provide some useful information as well. Of particular interest is the low-temperature γ transition. This transition has been attributed to small-scale molecular motions about flexible linkages in the polymer chain^{24,25}. Because they **are** on the scale of the repeat unit or smaller, these motions may be related to the gas transport process. The broad γ transition is most likely a composite of several superimposed peaks associated with the different molecular groups that make up the repeat unit $25-27$. For polymers that are largely aromatic, like these polysulphones, phenylene motions tend to be the most significant contributors to the γ transitions^{24,25}. Replacement of phenylene hydrogens with larger molecular groups can shift the γ peaks considerably $1^{2,2}$

In a previous paper¹², it was noted that the position of the low-temperature γ_2 transition was related to polymer free volume. The transition occurs at a lower temperature for materials with higher *FFV* presumably because intermolecularly imposed restraints to smallscale molecular motions are reduced. This peak was ascribed to the motion of the diphenylsulphone portion of the polymer repeat unit, which is the same for each material in this study. The γ_1 peak was associated with the bisphenol half of the repeat unit. For consistency, the same notation is used here. Where two peaks are present due to multiple substitutions, the peaks are labelled as γ_1 and γ'_1 .

The tan δ curves from the dynamic mechanical spectra of each of the polysulphones are given in *Figure 1.* The curves are offset vertically with a shift of one order of magnitude between each one. For PSF, only one broad γ peak is present, while two or more peaks appear in the γ region for the methyl-substituted polymers. The position of the γ_2 peak follows the above-mentioned relationship with free volume. The temperature of this peak is the lowest for TMHFPSF, the polymer with the highest *FFV*, and increases as the free volume decreases. The positions of the y_1 peaks are complicated by the

intramolecular differences between polymers; however, they seem to follow the same general trend with free volume as the γ_2 transition. The T_g varies in an opposite manner, increasing with *FFV.* By design, for this set of polymers, the same substitutions that inhibit chain packing also result in a loss of large-scale chain mobility. A more detailed look at the dynamic mechanical thermal behaviour of these and other polysulphones will be presented in a future paper.

GAS SORPTION AND TRANSPORT

Permeation

Pure-gas permeability measurements were made at 35°C for He, H_2 , O_2 , N_2 , CH₄ and CO₂ in that order using the standard permeation techniques employed in this laboratory^{28,29}. The permeability data were taken by stepping up from 1 atm with no prior exposure to high-pressure gas. Permeability isotherms are presented as a function of upstream pressure in *Figures 2- 7.* In the absence of strong plasticization²⁸, gas permeability coefficients generally decrease or remain constant with increasing driving pressure. The $CO₂$ permeability coefficient for TMHFPSF begins to increase above about 15 atm, indicating the onset of plasticization. This phenomenon is a result of the high concentration of sorbed $CO₂$ in the polymer at the elevated pressures. The permeability coefficients for all gases rank in the order:

$TMHFPSF \gg TMPSF > TMPSF-F > PSF$

This is the same order as their unsubstituted counterparts HFPSF, PSF and PSF- $F¹¹$, except that the tetramehtylsubstituted materials are several times more permeable

Figure 1 Loss tangent as a function of **temperature from** dynamic mechanical thermal analysis showing β and γ transitions

Figure 2 Pressure dependence of $CO₂$ permeability coefficient at 35 $^{\circ}$ C

Figure 3 Pressure dependence of CH₄ permeability coefficient at 35°C

in each case. These permeability values are in agreement with the relative values for the *FFV* from *Table 2.* As mentioned above, the γ_2 transition temperature is also related to *FFV*. As a result, the γ_2 transition occurs at a lower temperature for the more permeable materials. It is not clear whether there is any real link between the γ -type molecular motions and the gas transport process, but they are related by their sensitivity to free volume.

The ideal separation factor, defined as the ratio of the pure component permeabilities:

$$
\alpha_{AB}^* = P_A / P_B \tag{2}
$$

provides a useful measure of the intrinsic permselectivity of a membrane material for mixtures of A and B for most cases²⁸. The exceptions are instances where strong plasticization is observed, such as for TMHFPSF. Here

Figure 4 Pressure dependence of O_2 permeability coefficient at 35 $^{\circ}$ C

Figure 5 Pressure dependence of N_2 permeability coefficient at 35 $^{\circ}$ C

pure-gas data may be less representative of the mixed-gas performance of the membrane material The permeability coefficients and ideal separation factors for each of the polysulphones at a fixed pressure are shown in *Table 4* for the CO_2/CH_4 , O_2/\bar{N}_2 , He/CH₄ and He/H₂ gas pairs. TMPSF is several times more permeable than PSF with little loss in selectivity. The separation factor remains constant for the $CO₂/CH₄$ gas pair and is decreased slightly for O_2/N_2 and He/CH₄. The high degree of chain stiffness brought about by the methyl substitution may be responsible for this high relative selectivity. The replacement of the isopropylidene group of TMPSF with a hexafluoroisopropylidene unit further increases the permeability, again with only small change in selectivity. Replacement with a methylene unit decreases the permeability somewhat, while increasing the selectivity. These are the same results seen when substituting for the isopropylidene of $PSF¹¹$. This suggests that the effects of the substitutions are, at least to a certain degree, additive.

Solubility and diffusivity contributions

Pure-gas sorption measurements using a pressure decay sorption cell²⁹⁻³¹ were made for \tilde{N}_2 , $\tilde{C}H_4$ and $CO₂$ from 1 to 20 atm at 35 $^{\circ}$ C. Again, the data were taken in this order with no previous exposure to high-pressure gas. Sorption isotherms for TMHFPSF, TMPSF and PSF are shown in *Figures 8-10.* As mentioned above, the high sorption levels for CO₂ in TMHFPSF give rise to plasticization effects. When left under high-pressure $CO₂$ beyond the usual time required to reach equilibrium, the concentration of sorbed gas continues to rise. This phenomenon has been studied in detail in this laboratory 3^{2-37} but is beyond the scope of this paper.

For the case of negligible downstream pressure, the permeability coefficient can be written as:

$$
P = \overline{D}\overline{S} \tag{3}
$$

where \overline{D} is a diffusion coefficient averaged across the membrane thickness, and \overline{S} is a solubility coefficient

Figure 6 Pressure dependence of He permeability coefficient at 35°C

Table 4 Permeability and selectivity for polysulphones at 35°C

Figure 7 Pressure dependence of H_2 permeability coefficient at 35 $^{\circ}$ C

 $P \times 10^{10} \left(\frac{\text{cm}^3 \, (\text{STP}) \, \text{cm}}{10^{10}} \right)$ $\overline{\rm cm^2 \,s \,cmHg}$

 410 atm

 b 5 atm

 $\frac{1}{1}$ atm

obtained from the secant slope of the sorption isotherm at the upstream conditions 38 . An apparent diffusion coefficient can also be estimated from the membrane thickness l and the time lag θ of a transient permeation measurement:

$$
D_{\rm app} = l^2 / 6\theta \tag{4}
$$

The solubility and diffusivity contributions to the permselectivity of each polymer are given in *Table 5* for

the CO_2/CH_4 separation. Values obtained by both methods described above are included for comparison. In general, the apparent solubility obtained from the permeation time lag is larger than the measured solubility coefficient. Both the solubility and diffusion coefficients are increased by the tetramethyl substitution, but the diffusive effect is greater. The mobility selectivity is also much more significant in determining the permselectivity than the solubility selectivity. The solubility selectivity

Figure 8 Sorption isotherms for $CO₂$ at 35°C

Figure 9 Sorption isotherms for CH_4 at 35 $^{\circ}$ C

	Table 5 Solubility and diffusivity contributions to CO ₂ and CH ₄ permselectivity at 10 atm and 35°C ^a				
--	--	--	--	--	--

 $P \times 10^{10} \left(\frac{\text{cm}^3 \, (\text{STP}) \text{cm}}{\text{cm}^2 \, \text{s} \text{cmHg}} \right) \quad S \left(\frac{\text{cm}^3 \, (\text{STP})}{\text{cm}^3 \, \text{atm}} \right) \quad D \times 10^8 \left(\frac{\text{cm}^2}{\text{s}} \right)$

= Values in parentheses estimated from permeation time lag

Table 6 Solubility and diffusivity contributions to O_2 and N_2 permselectivity at 5 atm and 35°C

Polymer	P_{O_2}	$\alpha_{\text{O}_2/\text{N}_2}^*$	$\mathbf{a}_{\mathbf{app} \, \mathbf{O}_2}$	$S_{\rm O_2}/S_{\rm N_2}$	$D_{\rm app\,O_2}$	$D_{\rm O_2}/D_{\rm N_2}$
PSF	1.4	5.6	0.24	1.6	4.4	5.0
TMPSF	5.6	5.3	0.53	1.4	8.0	3.8
TMPSF-F	3.3	5.4	0.63	1,4	4.0	3.8
TMHFPSF	18	4.5	0.91	1.4	15	3.3

$$
P \times 10^{10} \left(\frac{\text{cm}^3 \, (\text{STP}) \, \text{cm}}{\text{cm}^2 \, \text{s} \, \text{cmHg}} \right) \qquad S \left(\frac{\text{cm}^3 \, (\text{STP})}{\text{cm}^3 \, \text{atm}} \right) \qquad D \times 10^8 \left(\frac{\text{cm}^2}{\text{s}} \right)
$$

"Estimated from permeation time lag

for each of the substituted polymers is lower than for PSF, but, because the diffusivity selectivities are higher, the overall separation factor is maintained at or above a value of 22 in all cases.

Table 6 gives the solubility and diffusivity contributions for the O_2/N_2 gas pair obtained from equation (4). Again, the tetramethyl substitution has increased both solubility and diffusivity, but the diffusive effects are not large for O_2/N_2 as for CO_2/CH_4 . As a result, the separation factor for the O_2/N_2 gas pair is slightly less for the methyl-substituted materials than for their unsubstituted counterparts. The respective O_2/N_2 separation factors for PSF-F and HFPSF are 5.5 and $5.1¹¹$, while those for TMPSF-F and TMHFPSF are 5.4 and 4.5.

Dual mode analysis. Fitting the sorption isotherms from *Figures 8-10* with the dual mode model^{39,40}:

$$
C = k_{\rm D}p + \left(\frac{C_{\rm H}b}{1 + bp}\right)p\tag{5}
$$

yields the parameters listed in *Table 7.* The parameter

 $k_{\rm D}$ is the Henry's law solubility coefficient, $C_{\rm H}$ is the Langmuir sorption capacity and b is an affinity parameter characterizing the ratio of the rate constants for sorption and desorption. The statistical analysis was carried out using a SAS program with the Marquardt least-squares method⁴¹. According to the dual mobility model^{42,43}, for the case of negligible downstream pressure, the permeability coefficient can be written as:

$$
P = k_{\rm D} D_{\rm D} \left(1 + \frac{FK}{1 + bp_2} \right) \tag{6}
$$

with

$$
K = \frac{C_H}{b/k_D} \qquad F = D_H/D_D
$$

The diffusion coefficient for the Henry's law and Langmuir modes, D_D and D_H , can then be readily calculated from the slope and intercept of an experimental plot of permeability *versus* $1/(1 + bp₂)$. The diffusion coefficients so obtained are given in *Table 7.* The values for TMHFPSF were computed without considering

Figure 10 Sorption isotherms for N_2 at 35°C

Table 7 Dual mode parameters for polysulphones at 35°C

Figure 11 CO_2 permeability coefficient as a function of Bondi^{18,19} fractional free volume for polysulphones

Figure 12 CH_4 permeability coefficient as a function of Bondi^{18,19} fractional free volume for polysulphones

Figure 14 N_2 permeability coefficient as a function of Bondi^{18,19} fractional free volume for polysulphones

Figure 13 O_2 permeability coefficient as a function of Bondi^{18,19} fractional free volume for polysulphones

Figure 15 He permeability coefficient as a function of Bondi^{18,19} fractional free volume for polysulphoncs

Figure 16 H_2 permeability coefficient as a function of Bondi^{18,19} fractional free volume for polysulphones

Figure 17 $CO₂$ diffusion coefficient as a function of Bondi^{18,19} fractional free volume for polysulphones

transport behaviour above 10 atm where significant plasticization begins to be evident for $CO₂$.

CONCLUSIONS

The symmetric replacement of phenylene hydrogens with methyl substituents in the backbone of bisphenol A polysulphone results in a high degree of chain stiffness

Figure 18 $CH₄$ diffusion coefficient as a function of Bondi^{18,19} fractional free volume for polysulphones

Table 8 Correlation of permeability and diffusion coefficient with fractional free volume $(FFV)^{a}$ for polysulphones

Gas	A	B	Linear correlation coefficient (R^2)
Permeability			
CO ₂	1.08×10^{6}	1.89	0.940
CH_4^b	1.14×10^{5}	2.04	0.937
O_2^c	1.71×10^{5}	1.80	0.965
$\tilde{N_2^c}$	1.16×10^{5}	2.01	0.964
He ^b	5.32×10^{4}	1.25	0.818
H_2^c	8.29×10^{4}	1.31	0.876
Diffusivity			
CO ₂	3.07×10^{4}	1.50	0.964
	5.97×10^{3}	1.56	0.927
$\operatorname{CH}_{2}^{b}$ N_{2}^{b}	2.43×10^{4}	1.59	0.970

 $P \times 10^{10} \left(\frac{\text{cm}^3 \, (\text{STP}) \, \text{cm}}{\text{cm}^2 \, \text{s} \, \text{cmHg}} \right)$ $D \times 10^8 \left(\frac{\text{cm}^2}{\text{s}} \right)$

² Correlations in the form P (or D) = $A \exp(-B/FFV)$ b At 10 atm and 35 \degree C

 c At 1 atm and 35 \degree C

Figure 19 N_2 diffusion coefficient as a function of Bondi^{18,19} fractional free volume for polysulphones

and a relatively open polymer matrix¹². In this study, the same effect is shown to occur for polysulphones based on other bisphenols. Further, the effects of combined methyl substitution and replacement of the isopropylidene unit of the bisphenol are somewhat additive. TMHFPSF has extremely high permeability while maintaining comparable selectivity to PSF due to this additivity.

As observed previously¹², the relative gas transport rates of these materials correlate with free-volume values calculated from group contribution methods $18-20$. Also, a relationship exists between the position of lowtemperature γ transition and gas transport rate. This relationship seems to arise because of their common link with free volume. The barriers to both small-scale polymer motions and penetrant diffusion are affected by free volume in a similar manner.

In designing polymers for gas separations, structural variations that increase chain rigidity while inhibiting chain packing can result in materials with both high permeability and permselectivity. The implications of this study are that it is possible to combine several of these modifications to achieve a desired set of transport characteristics. However, because of the high solubility of gases in polymers with high free volume, like TMHFPSF, plasticization by $CO₂$ is more prevalent (see *Fioure 2).* These plasticization effects may lead to lower actual separation factors in mixed-gas experiments than the values estimated here from pure-gas measurements. Mixed-gas experiments are needed to evaluate more fully the separation characteristics of TMHFPSF, especially for high-pressure mixtures having $CO₂$ as one of the components.

ACKNOWLEDGEMENTS

This research has been supported by the Department of Energy, Basic Sciences Program, through Grant DE-FG05-86ER13507, and the Separations Research Program at The University of Texas at Austin. Acknowledgement is also made to the National Science Foundation and the Phillips Petroleum Foundation for fellowship support to J. S. McHattie.

REFERENCES

- 1 Pye, D. G., Hoehn, H. H. and Panar, *M. J. Appl. Polym. Sci.* 1976, 20, 287
- 2 Kim, T. H., Koros, W. J., Husk, G. R. and O'Brien, K. C. *J. Membr. Sci.* 1982, 37, 45
- 3 Kim, T. H., Koros, W. J., Husk, G. R. and O'Brien, K. C. *J. Separ. Sci. Technol.* 1988, 23, 1611
- 4 Muruganandam, N., Koros, W. J. and Paul, *D. R. J. Polym. Sci., Polym. Phys. Edn.* 1987, 25, 1999
- *5 Muruganandam, N.andPaul, D.R.J. Membr.Sci. 1987,34,185* Hellums, M. W., Koros, W. J., Husk, G. R. and Paul, D. R. *J. Membr. Sci.* 1989, 46, 93
- 7 Pilato, L., Litz, L., Hargitay, B., Osborne, R. C., Farnham, A., Kawakami, J., Fritze, P. and McGrath, J. E. *Polym.Prepr. Am. Chem. Soc., Div. Polym. Chem.* 1975, 16, 42
- 8 Moe, M. B., Koros, W. J. and Paul, *D. R. J. Polym. Sci., Polym. Phys. Edn.* 1988, 26, 1
- 9 Henis, J. M. S. and Tripodi, M. K. *Separ. Sci. Technol.* 1980, 15, 1059
- 10 Lundy, K. A. and Cabasso, I. *Ind. Eng. Chem. Res.* 1989, 28, 742
11 McHattie, J. S., Koros. W. J. and Paul, D. R. Polymer 1991
- 11 McHattie, J. S., Koros, W. J. and Paul, D. R. *Polymer* 1991, 32, 2618
- 12 McHattie, J. S., Koros, W. J. and Paul, D. R. *Polymer* 1991, 32, 840
- 13 Johnson, R. N., Farnham, A. G., Clendinning, R. A., Hale, W. F. and Merriam, *C. N. J. Polym. Sci. (A-l)* 1967, 5, 2375
- 14 Mohanty, D. K., Hedrick, J. L., Gobetz, K., Johnson, B. C., Yilgor, I., Yilgor, E., Yang, R. and McGrath, J. E. *Polym. Prepr. Am. Chem. Soc., Div. Polym. Chem.* 1982, 23, 1,284
- 15 Mohanty, D. K., Sachdeva, Y., Hedrick, J. L., Wolfe, J. F. and McGrath, J. E. *Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem.* 1984, 25, 2, 19
- 16 Mohanty, D. K. PhD Dissertation, Virginia Polytechnic Institute, 1983
- 17 Mohanty, D. K., Wu, S. D. and McGrath, J. E. *Polym. Prepr. Am. Chem. Soc., Div. Polym. Chem.* 1988, 29, 1,352
- 18 Bondi, A. J. Phys. Chem. 1964, 441
19 Bondi, A. 'Physical Properties of N
- Bondi, A. 'Physical Properties of Molecular Crystals, Liquids, and Glasses', Wiley, New York, 1968
- 20 Sugden, *S. J. Chem. Soc.* 1927, 1786
21 Alexander, L. E. 'X-ray Diffraction in
- Alexander, L. E. 'X-ray Diffraction in Polymer Science', Wiley, New York, 1969
- 22 Schwarts, L. H. and Cohen, J. B. in 'Diffraction from Materials', Academic Press, New York, 1977, Ch. 3
- 23 McHattie, J. S., Koros, W. J. and Paul, *D. R. J. Polym. Sci., Polym. Phys. Edn.* 1991, 29, 731
- 24 Yee, A. F. and Smith, S. A. *Macromolecules* 1980, 14, (1), 54
- 25 Robeson, L. M., Farnham, A. G. and McGrath, J. E. *Midl. Macromol. Monogr.* 1978, 4, 405
- 26 Vardarajan, K. and Boyer, *R. F. J. Polym. Sci., Polym. Phys. Edn.* 1982, 20, 141
- 27 *Chung, C.I.andSauer, J.A.d. Polym.Sci.(A-2) 1971,9,1097*
- O'Brien, K. C., Koros, W. J., Barbari, T. A. and Sanders,
- *E. S. J. Membr. Sci.* 1986, 29, 229 29 Koros, W. J., Chan, A. H. and Paul, *D. R. J. Membr. Sci.* 1977,
- 2, 165 30 Koros, W. J. and Paul, *D. R. J. Polym. Sci., Polym. Phys. Edn.* 1976, 14, 1903
- 31 Koros, W. J. PhD Dissertation, The University of Texas at Austin, 1977
- 32 Jordan, S. M., Koros, W. J. and Beasely, *J. K. J. Membr. Sci.* 1989, 43, 103
- 33 Jordan, S. M., Koros, W. J. and Fleming, *G. K. J. Membr. Sci.* 1987, 30, 191
- 34 Puleo, A. C., Paul, D. R. and Kelley, *S. S. J. Membr. Sci.* 1989, 47, 301
- 35 Raymond, P. C. and Paul, *D. R. J. Polym. Sci., Polym. Phys. Edn.* 1990, 28, 2079
- 36 Raymond, P. C. and Paul, *D. R. J. Polym. Sci., Polym. Phys. Edn.* 1990, 28, 2103
- 37 Raymond, P. C. and Paul, *D. R. J. Polym. Sei., Polym. Phys. Edn.* 1990, 28, 2213
- 38 Chern, R. T., Koros, W. J., Hopfenberg, H. B. and Stannett, *V. T. d. Polym. Sci., Polym. Phys. Edn.* 1984, 22, 1061
- 39 Barrer, R. M., Barrie, J. A. and Slater, *J. J. Polym. Sci.* 1958, 27, 177
- 40 Vieth, W. R., Howell, J. M. and Hsieh, *J. H. J. Membr. Sci.* 1976, 1, 177
- 41 Marquardt, *D. W. J. Soc. Ind. Appl. Math.* 1963, 2, 431
- 42 Koros, W. J. and Paul, *D. R. J. Polym. Sci., Polym. Phys. Edn.* 1978, 16, 1947
- 43 Petropoulos, *J. H. J. Polym. Sci.* 1970, 8, 1797

APPENDIX

In a previous paper dealing with structurally modified polycarbonates 23 , an attempt was made to correlate gas permeability and diffusivity for a number of polymers with various measures of free volume. Free volume was calculated on both a mass and volume basis by the group contribution methods of Bondi^{18,19} and Sugden²⁰. The best statistical correlation between free volume and gas permeability coefficient P and gas diffusion coefficient D was found using the volume-based fractional free volume *(FFV)* computed by the Bondi method. The relation takes the form:

$$
P = A \exp(-B/FFV) \tag{7}
$$

$$
\overline{a}
$$

$$
D = A' \exp(-B'/FFV) \tag{8}
$$

where A, A', B and B' are constants for a particular gas.

In the present study, which includes two other papers^{11,12}, a number of polysulphones have been synthesized and characterized according to their gas transport properties. Plots of gas permeability coefficient for CO_2 , CH₄, O_2 , N₂, He and H₂ *versus FFV*⁻¹ for these materials are given in *Figures 11-16,* respectively. (The abbreviations used here and not already given in the text are: PSF-O, bisphenol O polysulphone; PES, poly(ether sulphone); DMPSF, dimethylbisphenol A polysulphone; DMPSF-Z, dimethylbisphenol Z polysulphone.) The diffusion coefficient for $CO₂$, $CH₄$ and N 2 is plotted in the same way with *FFV* in *Figures 17-19.* The constants from equations (7) and (8) are given in *Table 8* along with the correlation coefficient R^2 of the best-fit line for each graph.

This simple relation between gas permeation and diffusion and free volume fits the data quite well over this limited set of polymers. The lowest value for R^2 is obtained for He and H_2 permeability. These are the smallest gas molecules, so they would tend to be the least sensitive to small changes in free volume. The correlation coefficients are approximately equivalent whether using permeability coefficient or diffusion coefficient as the transport variable.